Reconstruction of Undersampled Big Dynamic MRI Data Using Non-Convex Low-Rank and Sparsity Constraints
نویسندگان
چکیده
Dynamic magnetic resonance imaging (MRI) has been extensively utilized for enhancing medical living environment visualization, however, in clinical practice it often suffers from long data acquisition times. Dynamic imaging essentially reconstructs the visual image from raw (k,t)-space measurements, commonly referred to as big data. The purpose of this work is to accelerate big medical data acquisition in dynamic MRI by developing a non-convex minimization framework. In particular, to overcome the inherent speed limitation, both non-convex low-rank and sparsity constraints were combined to accelerate the dynamic imaging. However, the non-convex constraints make the dynamic reconstruction problem difficult to directly solve through the commonly-used numerical methods. To guarantee solution efficiency and stability, a numerical algorithm based on Alternating Direction Method of Multipliers (ADMM) is proposed to solve the resulting non-convex optimization problem. ADMM decomposes the original complex optimization problem into several simple sub-problems. Each sub-problem has a closed-form solution or could be efficiently solved using existing numerical methods. It has been proven that the quality of images reconstructed from fewer measurements can be significantly improved using non-convex minimization. Numerous experiments have been conducted on two in vivo cardiac datasets to compare the proposed method with several state-of-the-art imaging methods. Experimental results illustrated that the proposed method could guarantee the superior imaging performance in terms of quantitative and visual image quality assessments.
منابع مشابه
Low-Rank and Sparse Matrix Decomposition for Accelerated Dynamic MRI with Separation of Background and Dynamic Components
Purpose: To apply the low-rank plus sparse (L+S) matrix decomposition model to reconstruct undersampled dynamic MRI as a superposition of background and dynamic components in various problems of clinical interest. Theory and Methods: The L+S model is natural to represent dynamic MRI data. Incoherence between k-t space (acquisition) and the singular vectors of L and the sparse domain of S is req...
متن کاملLow-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components.
PURPOSE To apply the low-rank plus sparse (L+S) matrix decomposition model to reconstruct undersampled dynamic MRI as a superposition of background and dynamic components in various problems of clinical interest. THEORY AND METHODS The L+S model is natural to represent dynamic MRI data. Incoherence between k-t space (acquisition) and the singular vectors of L and the sparse domain of S is req...
متن کاملImproved dynamic MRI reconstruction by exploiting sparsity and rank-deficiency.
In this paper we address the problem of dynamic MRI reconstruction from partially sampled K-space data. Our work is motivated by previous studies in this area that proposed exploiting the spatiotemporal correlation of the dynamic MRI sequence by posing the reconstruction problem as a least squares minimization regularized by sparsity and low-rank penalties. Ideally the sparsity and low-rank pen...
متن کاملAccelerated MR parameter mapping with low-rank and sparsity constraints.
PURPOSE To enable accurate magnetic resonance (MR) parameter mapping with accelerated data acquisition, utilizing recent advances in constrained imaging with sparse sampling. THEORY AND METHODS A new constrained reconstruction method based on low-rank and sparsity constraints is proposed to accelerate MR parameter mapping. More specifically, the proposed method simultaneously imposes low-rank...
متن کاملA Unified Tensor Regression Framework for Calibrationless Dynamic, Multi-Channel MRI Reconstruction
TARGET AUDIENCE: Magnetic resonance image (MRI) reconstruction developers. PURPOSE: Advanced image reconstruction strategies often require explicit knowledge about the MRI acquisition system or target signal. For example, the GRAPPA [1] method for parallel MRI requires a kernel model of inter-coil k-space correlations that result from receiver sensitivity modulations; and kt-BLAST [2] requires ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017